If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+9X=135
We move all terms to the left:
X^2+9X-(135)=0
a = 1; b = 9; c = -135;
Δ = b2-4ac
Δ = 92-4·1·(-135)
Δ = 621
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{621}=\sqrt{9*69}=\sqrt{9}*\sqrt{69}=3\sqrt{69}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{69}}{2*1}=\frac{-9-3\sqrt{69}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{69}}{2*1}=\frac{-9+3\sqrt{69}}{2} $
| 8x^2-9x-4=0 | | -51=-17m | | -4(7+2x)=60 | | 3x-10x=63 | | 5(x−3)=15 | | -2+0.8x=6 | | 6x+7-4(2x+2)=6 | | m^-7m-120=0 | | 0=16x^2+32x | | 6x+7-4(2x+2=6 | | 4x²-12x=0 | | 4x+2(4x+1/2)=1 | | 4x²=12x | | y/11+4=-17 | | x3+7x2-36=0 | | 4x-5=6x+13 | | r−18=68 | | 8n^2+3n+5=0 | | 70-30+56-96+2x÷7+12=0 | | 28/7+3/2=x | | 3y+8=54 | | 3x-2(5x+1)=4x-5 | | k=6(14) | | 9f-6=82 | | (2^x+2)-(2^x)=1050 | | 12/3=p-5/p-12 | | 676=4(x+17) | | M=-6/5b=-2 | | 5(1+2m)=5(8+20) | | 5(2x+1)=3(x+4)−5, | | t/32=-20 | | (-4½)r=36. |